
SPACE: A New Approach to Operating System Abstraction

D. Probert J. L. Bruno M. Karaorman

probert@cs.ucsb.edu bruno@cs.ucsb.edu murat@cs.ucsb.edu

Department of Computer Science | University of California at Santa Barbara

Abstract

Object-oriented operating systems, as well as con-

ventional O/S designs, present an overly restrictive

level of abstraction to the programmer. Models of

objects, processes, concurrency, etc., are embedded

within the system in such a way that they are di�-

cult to extend or replace.

SPACE is an extensible operating system being

developed for research into object-oriented and dis-

tributed systems design. SPACE uses capability mech-

anisms based on the manipulation of address spaces to

provide low-level kernel primitives from which higher-

level abstractions can be constructed.

Standard micro-kernel abstractions such as pro-

cesses, virtual memory, interprocess communication,

and object models are built outside the kernel in

SPACE, using the SPACE-kernel primitives: spaces,

domains, and portals. Multiple versions of the stan-

dard O/S abstractions can coexist and interact.

1 Introduction

This paper provides an overview of the approach

being taken in the design of the SPACE Operating

System. The description is broken into three sections.

First the nature of operating system abstractions is

discussed. Next, the particular abstractions used in

SPACE are described, and we explain how standard

O/S abstractions are built on top of them. In the �nal

section we sketch the building of objects.

2 Operating System Abstractions

Historically, operating systems were developed to

allow the sharing of physical resources (processors,

memory, devices), insulate programmers from the de-

tails of the underlying hardware architecture, and pro-

vide for system integrity and protection. The primary

strategy used in O/S design is to replace the low-level

mechanisms available in the hardware by a uniform

set of higher-level abstractions (e.g. processes, virtual

memory, �lesystems). The integrity of the system is

maintained by using memory management to isolate

the system data structures and reserving the use of

certain hardware functions to the operating system.

As the functional demands on computer systems

have increased, operating systems have provided in-

creasing functionality. Loaders became compilers, li-

braries and dynamic linkers. Filesystems acquired

database mechanisms. Interactive computing evolved,

changing job control languages into command inter-

preters. Terminal handlers became window systems.

To control the complexity, operating systems, be-

ginning with the THE system[1], were developed as

layers of abstractions. As operating systems contin-

ued to grow, and become more unwieldy, O/S func-

tionality was divided between a single, central portion

(the kernel) and separate (user-mode) processes and

programs (e.g. UNIX[2]).

The choice of which abstractions to place in the

kernel is a fundamental one. Normally only a single

abstraction of each type is supported, and the abstrac-

tions are generally di�cult to extend or replace. At-

tempting to extend a kernel abstraction to user-mode

(e.g. Mach external pagers [3]) encounters signi�cant

constraints and ine�ciencies.

3 Abstractions in SPACE

The SPACE operating system is taking a new ap-

proach to O/S abstractions by moving the standard

O/S primitives outside the kernel, and implementing

them in terms of the SPACE primitives: spaces, do-

mains, and portals.

Spaces

Spaces provide the address mapping for processor

addresses. Each space speci�es the translation of pro-



trap/arch interface
device drivers
processes
inter process comm.

virtual memory

file systems

networking
runtime libraries

compilers
command interpreters
databases

applications

submicro-kernel O/S
[SPACE]

micro-kernel O/S

kernel-based O/S
[UNIX]

large O/S
[OS/360, VAX/VMS]

[Mach, Chorus]

Figure 1: The diagram shows di�erent types of O/S

abstractions. The arrows indicate locations where the

boundary between kernel and user-mode implementa-

tion is made for various systems.

cessor addresses into bus addresses and portals. Bus

addresses give the processor access to physical mem-

ory or i/o. Portals are generalizations of traditional

pagefault handling mechanisms, and are described be-

low.

A space may map a given processor address into

both a bus address and a portal. Whether the bus

address mapping or the portal mapping is used is not

determined by the space alone, but depends on the

protections associated with the bus address mapping,

and the type of access being made.

SPACE uses a protection scheme which quali�es

each space into a set of domains.

Domains

SPACE extends the conventional protection mech-

anism used when mapping addresses. Instead of pro-

viding a single pair of valid and writable bits for each

mapping, SPACE provides bit-vectors, which are in-

dexed by the protection-id associated with the proces-

sor.

The quali�cation of a space by a protection-id is

called a domain. For a given type of access, the cur-

rent domain determines a mapping from each proces-

sor address into either a bus address or a portal.

Many systems have supported limited mechanisms

similar to domains. The page table entries used in

VAX/VMS support four sets of page protection bits,

which have e�ect depending on whether the proces-

sor mode (analogous to the protection-id in SPACE)

is user, supervisor, executive, or kernel. Most other

systems (including VAX/UNIX) support at least pro-

tection bits for user and kernel. However, the di�erent

sets of protection bits are usually hierarchical. For ex-

ample, user write-access implies kernel write-access.

Domains are more general in both the number of

sets of protection bits, and the lack of a hierarchical re-

lationship. Consider a set of domains within the same

space (i.e. domains for which only the protection-ids

vary). Each domain can have data which is only acces-

sible when the processor is executing in that domain,

or data which is accessible from all domains, or in gen-

eral, data for which only some set of the other domains

have read and/or write access. The inter-accessibility

of the data between domains is determined by the bit

vector of protections associated with each bus address

mapping in the common space. The level of access

control provided by this facility is particularly useful

for building protected objects, as will be discussed in

the �nal section.

Portals

Portals are the mechanism which allow processor

execution to switch domains. Whenever processor ex-

ecution encounters a trap (or fault or interrupt or ex-

ception), the SPACE kernel executes brie
y to lookup

the portal corresponding to the trap (portals are as-

sociated with addresses in the case of pagefaults), and

then the processor continues execution in the domain

speci�ed by the portal.

In addition to specifying the new domain (space

and protection-id), portals specify an address at which

to begin execution. (Portals also have a set of 
ags

which govern interaction with architectural details

such as interrupts).

Because interrupts are mapped into portals, device

drivers in SPACE are built outside the kernel within

domains. Due to the nature of interrupts, their por-

tals must always be available. Thus interrupt portals

belong to a special class of global portals which are

the same in all domains. Exceptions which are related

to the execution of the processor (e.g. 
oating-point-

under
ow), are mapped into portals that are speci�c

to each domain.

Most hardware architectures support explicit trap

instructions, which can be used to enter the operating

system from a user program. In SPACE most trap

instructions are mapped into portals. This facilitates

the implementation of system calls that are executed

within domains, rather than within the kernel. How-

ever a few of the trap instructions are reserved for

implementing calls into the SPACE kernel. These ker-



nel calls are used to provide explicit access to the two

basic kernel primitives.

3.1 SPACE Kernel Primitives

There are two primary operations supported by the

SPACE kernel: portal entry which is used to move be-

tween domains, and resume pcb which resumes exe-

cution at a point where a portal entry had occurred.

Portal entry can be implicit (e.g. a pagefault or i/o in-

terrupt), or explicit through a kernel call. Resume pcb

is always an explicit operation.

When a processor switches domains by passing

through a portal, the code sequence that was previ-

ously running usually needs to be resumed at some

time. This requires that the processor state be saved.

The SPACE kernel saves the processor state, as well

as the identity of the current domain, in a data struc-

ture called the processor control block (pcb). A new

pcb may be allocated for processor execution at every

portal entry, but it is only used if the code sequence

in the new domain also enters a portal.

Each pcb has a unique token associated with it.

The new domain is recorded in the pcb as the owner

of the token, so that only code sequences running in

the new domain can use the token to do a resume pcb.

The code sequence executed due to a portal entry

is provided a set of parameters. These parameters

vary, depending on the type of portal entry, but al-

ways include the pcbtoken and previous domain. The

parameters can also include the arguments to an ex-

plicit portal entry, which is useful for implementing

system calls.

Resume pcb is the operation that reverses a por-

tal entry, resuming an interrupted code sequence. The

pcbtoken passed as a parameter identi�es the pcb

from which the kernel restores the processor state and

domain. Other parameters in
uence details such as

whether the current instruction is retried, and how to

supply read data.

The pcb associated with the code sequence calling

resume pcb is deallocated, and the pcb belonging to

the resumed sequence is marked so that it's token is

no longer valid.

It will sometimes happen that a processor will pass

through one portal, initiating a code sequence that

decides the trap really needs to be dealt with by yet

another portal (e.g. a 
oating-point trap deciding to

invoke a generic signal handling mechanism, or a clock

interrupt deciding to invoke a processor scheduler).

Rather than require that each code sequence in the

chain be resumed, SPACE provides a variant of por-

tal entry called pass pcb. Pass pcb allows ownership

of a pcb to be passed through a portal. The pcb for

the code sequence that passed the pcbtoken is deallo-

cated, and the new domain is recorded as the owner

of the original pcbtoken.

3.2 Building Standard Abstractions

Standard operating system abstractions, such as

processes, virtual memory, interprocess communica-

tion, etc., are implemented outside the kernel in

SPACE. They are built on top of the kernel primitives

spaces, domains and portals. Di�erent implementa-

tions of these abstractions can coexist and interact.

As illustrations, we describe some of the ideas behind

possible implementations of single-threaded unix-like

processes and virtual memory.

Processes

The model of a process we are using in this illustra-

tion requires an addressing environment, an execution

thread, access to system calls, implementation of sig-

nals, and process scheduling.

Each process is uniquely associated with a space.

The space contains one domain in which all of the pro-

cess' text, data, and stack are accessible, and in which

normal (user-mode) execution of the process takes

place. Any reasonable register is chosen as the stack

pointer. Other domains within the process' space are

used to implement system calls. The process' text,

data, and stack are accessible from the system call

domains.

All addresses within the process' text, data, and

stack map into a portal that executes the pagefault

code within the virtual memory implementation. (The

pagefault portal is only invoked when the hardware

reports a fault on the MMU.)

All other addresses (not reserved for the UNIX sys-

tem) map into a portal to the signal implementation.

The signal implementation has its code and data in

memory that is accessible from one of the system do-

mains within the the process' space. Since the sys-

tem domains can access the process' stack, the signal

implementation can prepare the stack to run the pro-

cess' signal handler. The signal handlers themselves

are invoked through portal entry, and returning from

a signal is accomplished with resume pcb.

Preemption of processes is arbitrated by the clock

interrupt portal. If the code sequence on the other

side of the clock portal determines that the process'

cpu quantum has expired, it passes the pcbtoken for

the process through a scheduler portal. The sched-



uler saves the pcbtoken, and then resumes a previously

saved pcb on the current processor.

Virtual Memory

Implementing virtual memory requires managing

physical resources, such as memory pages, swap disk

space, and MMU contexts. The VM code runs both

on demand, in response to pagefaults, and at regular

time intervals, i.e. to age pages.

The VM implementation is given its own space,

consisting of a primary domain, plus what other do-

mains are needed to provide access to other system

services. The pagefault portals in the spaces of UNIX

processes switch to this domain. The clock also peri-

odically enters the page-aging portal, which gives the

VM an opportunity to run code that examines refer-

ence bits on pages.

The SPACE kernel views the MMU as a set of reg-

isters that can be made to point at the mappings for

di�erent domains simply by storing the right set of

values. The kernel keeps a cache of these values, but

invokes a global MMU context fault portal if it tries

to switch to a domain for which it doesn't have the

context values.

The context fault portal points to a code sequence

in the VM domain (whose MMU context must obvi-

ously never be deleted). The VM code uses a kernel

call to load the missing MMU context values into the

kernel.

A single process can havemultiple VM implementa-

tions associated with di�erent regions of its addresses,

simply by using di�erent pagefault portals for each

region. This allows new VM implementations to be

experimented with in an incremental fashion. The

SPACE mechanism for extending VM di�ers from the

external-pager approach in Mach, in that the entire

VM system can be supplanted by a new one.

Sharing of data between processes is a common fea-

ture of VM systems, and SPACEVM implementations

may also share data (i.e. between spaces). However

there are applications of shared memory where the

conventional VM approach is inadequate because dy-

namically mapping/unmapping of shared data incurs

too much overhead. We look at an example of this

in the �nal section, where we consider the passing of

data to protected objects.

4 SPACE Objects

As with the standard O/S abstractions, like pro-

cesses and virtual memory, there is no object abstrac-

tion within the SPACE kernel. Instead a variety of

object models can be supported within the system at

the same time.

We believe that the underlying abstractions of

SPACE, together with its inherent extensibility, pro-

vide some special facilities that make it possible to

resolve several important issues regarding the devel-

opment of object models.

4.1 Operating System Conformance

Some earlier work on implementing concurrency

in the Ei�el programming language[4][5] has demon-

strated the di�culty of interfacing object models with

the conventional abstractions of process, virtual mem-

ory, and interprocess communication available in op-

erating systems without explicit object support. On

the otherhand, explicit object support embeds a par-

ticular object abstraction into the system, making the

system perhaps no more valuable for experimenting

with new object paradigms than a non-object operat-

ing system.

One of the reasons for building SPACE is to be able

to modify operating system abstractions to better con-

form to the requirements of OOPLs. The implementa-

tion of concurrent objects requires more control over

processor scheduling and interprocess communication

and synchronization than is available in conventional

systems. Within SPACE the interface provided by the

O/S to the OOPL can be tailored to �t by modifying,

extending, and replacing inadequate abstractions.

4.2 Methodical Attributes

The portal abstraction provides a potentially use-

ful tool for the implementation of OOPLs. In SPACE,

methods that take no arguments, and return a single

value can be replaced by accesses to addresses that

are mapped into portals. The portals result in execu-

tion of a method associated with the object, yet the

invoking program can treat the method invocation as

a pointer reference.

One use of this mechanism is in synchronizing with

active objects. Consider a program which invokes a

method that will run concurrently in an active object.

The method returns immediately, providing a pointer

to the result. This pointer initially points to an invalid

address, but when the active object completes execu-

tion of the method, it will arrange for the address in

the pointer to become valid, pointing at the result.

Meanwhile, the original program continues execu-

tion. If it accesses the pointer before the active object

�nishes, the address will be invalid and the program



will enter a portal designed to block until the active

object is done.

4.3 Protected Objects

Protection is an important issue in the implemen-

tation of object oriented systems. Many OOPL imple-

mentations (e.g. Ei�el[6] and C++[7]) provide protec-

tion only through the compilers. However in building

larger systems it is necessary to use the architectural

features of the hardware to control access to objects.

We refer to such objects as protected objects. Pro-

tected objects contain private data whose integrity is

to be guaranteed by the hardware (MMU) rather than

by the compiler.

A problem that arises with protected objects, is

how to pass them unprotected objects in an e�cient

way. Copying objects is not very e�cient unless they

are of very small size. Statically mapping all unpro-

tected objects to be accessible to each protected object

is likely to over
ow the available address size. Dy-

namically mapping/unmapping the unprotected ob-

jects incurs too much overhead.

The solution in SPACE is to statically map pro-

tected objects into di�erent domains within each

space that contain unprotected objects which refer-

ence them. The unprotected objects have their pro-

tections set so that they are accessible by all domains

within the space, whereas the private data of each pro-

tected object is only accessible within the domain as-

signed to that object. The methods of the protected

objects are accessed via portal entry, which switches

to the protected domain. The unprotected objects are

accessible from the unprotected domain, and thus can

be passed to protected methods by pointer reference.

Acknowledgements

The original notions for SPACE were inspired by

the ideas about associating general semantics with seg-

ments in Clouds/Ra[8]. (Clouds also helped inspire

the name SPACE ). Domains were developed as a so-

lution to object copying in Clouds. The use of vir-

tual memory to provide capabilities is similar to the

implementation of the MCP (O/S) on the segmented

architecture of the Burroughs B5500/6700, and from

ideas developed later in the Intel i432.

We �rst heard of micro-kernels (though not by that

name) a decade ago in a 4.2BSD futures talk. Mach,

Chorus, and Clouds/Ra are contemporary systems

that successfully exploit the idea. A talk on 4.2BSD

also suggested the name portals which in that context

were intended to be �les that invoked processes when

referenced.

References

[1] E. W. Dijkstra, \The Structure of the THE Multi-

programming System," CACM, Volume 11, Num-

ber 5 (May 1968), pp 341-346.

[2] D. M. Ritchie and K. Thompson, \The UNIX

Time-Sharing System," CACM Volume 21, Num-

ber 2 (February 1978), pp 120-126.

[3] A. Tevanian, et. al., \A UNIX Interface for Shared

Memory and Memory Mapped Files Under Mach,"

Technical Report, CMU (July 1987)

[4] M. Karaorman, J. L. Bruno, \Introducing Concur-

rency to a Sequential Object-Oriented Language",

Technical Report, Department of Computer Sci-

ence, UC Santa Barbara, 1990.

[5] M. Karaorman, J. L. Bruno, \Concurrent Pro-

gramming with Ei�el", Proc. of Ninth Interna-

tional Ei�el User Conference, Santa Barbara, CA,

August 1991.

[6] B. Meyer, Object-Oriented Software Construction,

Prentice Hall, New York, 1988.

[7] B. Stroustrup, The C++ Programming Language,

Addison-Wesley, 1986.

[8] P. Dasgupta, et. al., \The Design and Implementa-

tion of the Clouds Distributed Operating System,"

Technical Report, School of Information and Com-

puter Science, Georgia Institute of Technology.


